Data¶
Rydberg System¶
\[
\hat{H}_{\mathrm{Rydberg}} =
\sum_{i < j}^{N} \frac{C_6}{\lVert \mathbf{r}_i - \mathbf{r}_j \rVert} \hat{n}_i \hat{n}_j - \delta \sum_{i}^{N} \hat{n}_i - \frac{\Omega}{2} \sum_{i}^{N} \hat{\sigma}_i^{(x)},
\]
\[
C_6 = \Omega \left( \frac{R_b}{a} \right)^6, \quad V_{ij} = \frac{a^6}{\lVert \mathbf{r}_i - \mathbf{r}_j \rVert^6}
\]
- \(N = L \times L =\) number of atoms/qubits
- \(i, j =\) qubit index
- \(V_{ij} =\) blockade interaction between qubits \(i\) and \(j\)
- \(a =\) Lattice spacing
- \(R_b =\) Rydberg blockade radius
- \(\mathbf{r}_i =\) the position of qubit \(i\)
- \(\hat{n}_i =\) number operator at qubit \(i\)
- \(\delta =\) detuning at qubit \(i\)
- \(\Omega =\) Rabi frequency at qubit \(i\)
Dataset¶
Consider setting \(\Omega = 1\) and varying the other Hamiltonian parameters independently :
- \(L = [5, 6, 11, 12, 15, 16]\)
- \(\delta / \Omega = [-0.36, -0.13, 0.93, 1.05, 1.17, 1.29, 1.52, 1.76, 2.94, 3.17]\)
- \(R_b / a = [1.05, 1.15, 1.3]\)
- \(\beta \Omega = [0.5, 1, 2, 4, 8, 16, 32, 48, 64]\)
Data available on Pennylane Datasets