Models
rydberggpt.models.rydberg_decoder_wavefunction
¶
RydbergDecoderWavefunction
¶
Bases: RydbergEncoderDecoder
Source code in src/rydberggpt/models/rydberg_decoder_wavefunction.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
|
from_rydberg_encoder_decoder(cond: Batch, model: RydbergEncoderDecoder)
classmethod
¶
Create RydbergDecoderWavefunction from a RydbergEncodeDecoder model and a Hamiltonian/graph.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cond |
Batch
|
The Hamiltonian/graph. |
required |
model |
RydbergEncoderDecoder
|
The model used to generate a RydbergDecoderWavefunction. |
required |
Returns:
Type | Description |
---|---|
RydbergDecoderWavefunction
|
The wavefunction taken from a trained RydergEncoderDecoder model for the groundstate of the Hamiltonian/graph specified by cond. |
Source code in src/rydberggpt/models/rydberg_decoder_wavefunction.py
get_log_probs(x: torch.Tensor)
¶
Compute the log probabilities of a given input tensor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x |
Tensor
|
The input tensor. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
The log probabilities. |
Source code in src/rydberggpt/models/rydberg_decoder_wavefunction.py
get_rydberg_energy(samples: torch.Tensor, undo_sample_path=None, undo_sample_path_args=None) -> torch.Tensor
¶
Calculates energy of the model based on the Hamiltonian defined by cond (graph).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
samples |
Tensor
|
Samples drawn from model based on cond. |
required |
undo_sample_path (torch.Tensor): Map that undoes the sample path of the model to match the labelling of in the graph. undo_sample_path_args (tuple): Additional arguments for undo_sample_path.
Returns:
Type | Description |
---|---|
Tensor
|
A tensor containing the estimated energy of each sample alongside its decomposition into terms. |
Source code in src/rydberggpt/models/rydberg_decoder_wavefunction.py
get_samples(batch_size: int, fmt_onehot: bool = True, requires_grad: bool = False, verbose: bool = True)
¶
Generate samples using the forward pass and sampling from the conditional probabilities.
The samples can be returned either in one-hot encoding format or in label format,
according to the fmt_onehot
argument.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch_size |
int
|
The number of samples to generate. |
required |
fmt_onehot |
bool
|
A flag to indicate whether to return the samples in one-hot encoding format. If False, the samples are returned in label format. Defaults to True. |
True
|
requires_grad |
bool
|
A flag to determine if grad is needed when sampling. Defaults to False, |
False
|
verbose |
bool
|
A flag indicating whether to print sampling progress. Defaults to True, |
True
|
Returns:
Type | Description |
---|---|
Tensor
|
A tensor containing the generated samples. The shape of the tensor is (batch_size, num_atoms, 2) for one-hot encoding format, and (batch_size, num_atoms) for label format. The samples are padded according to the number of nodes in each graph within |
Source code in src/rydberggpt/models/rydberg_decoder_wavefunction.py
get_x_magnetization(samples: torch.Tensor)
¶
Calculates x magnetization of the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
samples |
Tensor
|
Samples drawn from model based on cond. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
A tensor containing the estimated x magnetization of each sample. |
Source code in src/rydberggpt/models/rydberg_decoder_wavefunction.py
rydberggpt.models.rydberg_encoder_decoder
¶
RydbergEncoderDecoder
¶
Bases: EncoderDecoder
RydbergTransformer is a specific implementation of the Encoder-Decoder architecture that uses an encoder and decoder composed of multiple layers of EncoderLayer and DecoderLayer modules, respectively. The encoder and decoder are followed by an embedding layer and a generator layer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
encoder |
Encoder[EncoderLayer]
|
The encoder module. |
required |
decoder |
Decoder[DecoderLayer]
|
The decoder module. |
required |
tgt_embed |
Module
|
The target embeddings module. |
required |
generator |
Generator
|
The generator module. |
required |
config |
dict
|
A dictionary of configuration options. Defaults to None. |
None
|
**kwargs |
Additional keyword arguments. |
required |
Source code in src/rydberggpt/models/rydberg_encoder_decoder.py
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
|
get_log_probs(x: torch.Tensor, cond: Batch)
¶
Compute the log probabilities of a given input tensor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x |
Tensor
|
The input tensor. |
required |
cond |
Batch
|
The conditional graph structure. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
The log probabilities. |
Source code in src/rydberggpt/models/rydberg_encoder_decoder.py
get_samples(batch_size: int, cond: Batch, num_atoms: int, fmt_onehot: bool = True)
¶
Generate samples using the forward pass and sampling from the conditional probabilities.
The samples can be returned either in one-hot encoding format or in label format,
according to the fmt_onehot
argument.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch_size |
int
|
The number of samples to generate. |
required |
cond |
Batch
|
The batch of conditional graph structures. |
required |
num_atoms |
int
|
The number of atoms to sample. For num_atoms > num_nodes
in each graph within |
required |
fmt_onehot |
bool
|
A flag to indicate whether to return the samples in one-hot encoding format. If False, the samples are returned in label format. Defaults to True. |
True
|
Returns:
Type | Description |
---|---|
Tensor
|
A tensor containing the generated samples. The shape of the tensor is (batch_size, num_atoms, 2) for one-hot encoding format, and (batch_size, num_atoms) for label format. The samples are padded according to the number of nodes in each graph within |